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ABSTRACT

Monoaromatic antioxidants are one of the major classes of small druggable molecules whose use is widespread as 
preservatives in pharmaceutical and foodstuff industry. The differentiation of these compounds according to their source 
is notably difficult due to their shared structural features. This work showcases how to promote the classification of natural 
and synthetic monoaromatic antioxidants using multivariate analysis, data mining and machine learning algorithms. 
Physicochemical and biopharmaceutical molecular descriptors were selected and calculated do render alignment and 
classification models using principal components analysis, data mining, support-vector machines (linear kernel) and 
multilayer perceptron. We showcased that physicochemical and biopharmaceutical molecular predictors may be suitable 
attributes for differentiating natural and synthetic monoaromatic antioxidants, since their outputs from multivariate 
analysis, data mining and machine learning algorithms generated a reliable and accurate model for prompt classification 
of natural and synthetic monoaromatic antioxidants. Moreover, all classification models yielded accuracies above 80%. 
This work therefore sheds light on the use of artificial intelligence in the development of classifiers for pharmaceutical and 
foodstuff applications. 
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RESUMO

Os antioxidantes monoaromáticos são uma das principais classes de pequenas moléculas farmacológicas cujo uso como 
conservantes é difundido na indústria farmacêutica e alimentícia. A diferenciação desses compostos de acordo com 
sua origem é notavelmente difícil devido às suas características estruturais compartilhadas. Este trabalho mostra como 
promover a classificação de antioxidantes monoaromáticos naturais e sintéticos usando análise multivariada, mineração 
de dados e algoritmos de aprendizado de máquina. Descritores moleculares físico-químicos e biofarmacêuticos foram 
selecionados e calculados para renderizar modelos de alinhamento e classificação usando análise de componentes 
principais, mineração de dados, máquinas de suporte de vetores (kernel linear) e perceptron multicamadas. Mostramos 
que preditores moleculares físico-químicos e biofarmacêuticos podem ser atributos adequados para diferenciar 
antioxidantes monoaromáticos naturais e sintéticos, uma vez que seus resultados de análise multivariada, mineração de 
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1. INTRODUCTION
The secondary metabolism of plants and other 
organisms houses a myriad of biologically 
active compounds with potentially therapeutic 
applicability (WANG et al., 2020). Although several 
biochemical pathways are known to foster the 
expression of secondary metabolites, the shikimic 
acid pathway is widely considered as the main 
contributor when the biosynthesis of antioxidants is 
concerned, especially upon drought stress (SOUZA 
et al., 2021; YADAV et al., 2021) mainly through 
phytohormones homeostasis and their signaling 
networks, which further initiate the biosynthesis 
of secondary metabolites (SMs). Among these 
free-radical scavenging metabolic products are 
monoaromatic phenolic compounds, which 
are acknowledged to exhibit thermodynamic 
feasibility to mop up reactive oxygen species, 
as well as interact with several bodily receptors; 
thereby promoting anti-inflammatory effects; 
gastroprotective, neuroprotective as well as 
anticancer activities (ALVES et al., 2020; OLIVEIRA et 
al., 2021; THOMAZ et al., 2018a)

Regarding the building block of monoaromatic 
antioxidants, the good electron acceptor/donor 
behavior provided by the resonance allow these 
molecules to participate in charge-transfer reactions 
with many other chemical species (THOMAZ et al., 
2020). Owing to this feature, many researchers have 
exploited the phenolic moiety as the backbone 
of synthetic antioxidant compounds, thereby 
employing medicinal chemistry strategies such as 
bioisosterism and latentiation to putatively enhance 
the antioxidant properties of these additives in 

dados e algoritmos de aprendizado de máquina geraram um modelo confiável e preciso para classificação imediata de 
antioxidantes monoaromáticos naturais e sintéticos. Além disso, todos os modelos de classificação apresentaram acurácias 
acima de 80%. Este trabalho, portanto, lança luz sobre o uso da inteligência artificial no desenvolvimento de classificadores 
para aplicações farmacêuticas e alimentícias.

Palavras chaves: Antioxidantes; Quimioinformática; Análise multivariada; Conservantes Farmacêuticos

drug, foodstuff and cosmetics (ARRUDA et al., 2020; 
MOREIRA et al., 2022; NAGARAJAN et al., 2020).

Both natural (MORENO et al., 2019; THOMAZ et 
al., 2018a) and synthetic (LIU, MABURY, 2020; 
RESENDE et al., 021) monoaromatic antioxidant 
compounds are known to showcase fairly 
diverse chemical structures, what usually turns 
the prediction of their biological activities and 
physicochemical behavior a strenuous task if in vitro 
and in vivo tests are considered. In this sense, high-
throughput computational analysis of molecular 
descriptors would allow preliminary evaluation 
of selected attributes, and better shed light on 
the pharmacokinetics/pharmacodynamics of 
these compounds; as well as their medicinal uses 
(THORNBURG et al., 2018). 

Nonetheless, in silico studies of small druggable 
molecules are becoming ever-more present in 
chemistry due to the leap of processing power 
since the transition from analog computers to 
digital information (AGONI et al., 2020; HUANG et 
al., 2020b). Moreover, the availability of machine 
learning approaches as well as online servers for 
small molecule-targeted cheminformatic studies 
such as feature alignment/ pharmacophore/ 
toxicophore modeling further broadens the 
appeal of these methods, thereby allowing readily 
obtainable information concerning their predicted 
physicochemical features, absorption/ distribution/ 
metabolism/ excretion/ toxicity (ADMET), as well 
as classification according to particular attributes 
(FERREIRA, ANDRICOPULO, 2019).
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Considering the application of the processing power 
of computers into physicochemical investigations, 
several authors have reported the implementation 
of semiempirical and ab initio quantum chemistry 
calculations in order to better investigate redox 
features which are whether/or not involved in 
antioxidant capacity (ALASADY et al., 2020; KUMAR 
et al., 2021; LEUNG et al., 2018).

In this sense, the extended Hückel method (EHM) 
has been used to determine the energies of σ and 
π molecular orbitals, in order to trace correlations to 
the thermodynamical feasibility of electron-transfer 
(CONTARDI et al., 2020; OLIVEIRA et al., 2017); while 
other authors made use of more computational 
power-demanding density-functional theory 
calculations (AYOUBI-CHIANEH, KASSAEE, 2020; 
OLIVEIRA et al., 2017; RODRIGUES et al., 2019).

Nevertheless, the correlation of orbital energies to 
general physicochemical features such as molecular 
weight (MW); number of hydrogen bond donors 
(DHb) and acceptors (AHb); as well as routable 
bonds (RB); topological surface area (TSA); partition 
coefficient (Log P) and water solubility (WS) is not as 
often explored (HUANG et al., 2020a).

Literature describes that ADMET of small druggable 
molecules such as monoaromatic antioxidants is 
heavily determined by their chemical structure. In 
this sense, the gastrointestinal absorption (GI) and 
blood-brain barrier permeability (BBB) of natural 
products change according to their physicochem-
ical features (FERREIRA, ANDRICOPULO, 2019). 
Nonetheless, many reports on structure-activity 
relationship for computer-aided drug discovery/
design make use of physicochemical parameters 
as molecular descriptors; henceforth implementing 
several statistical tools to mine data and uncover 
patterns which describe the potential biologic 
activity/features of groups of compounds (LU et al., 
2018; USHA et al., 2018).

The implementation of in silico classifiers is 

becoming more common with the advance 

and availability of open-sourced libraries. The 

accessibility of these tools allows researchers 

to develop data separation platforms based on 

statistical modeling (e.g., multivariate analysis) 

or non-statistical approaches using artificial 

intelligence for several applications in science. 

In fact, it has been reported the development 

of classifiers based on distinct data processing 

methods, such as associating principal 

components (PCA) and/or hierarchical cluster 

analysis, as well as supervised machine learning 

tools such as support-vector machines (SVM) 

to stablish reliable cheminformatic classifiers 

(SOROKINA, STEINBECK, 2020). Moreover, the 

pharmacometrics and pharmaceutical properties 

of natural products such as phenolic antioxidants 

have been successfully explored and reliably 

categorized by computational approaches; 

what further highlights the applicability of this 

technology (CAPECCHI, REYMOND, 2021; LI et al., 

2021; NAGY et al., 2022).

Therefore, owing to the relevance of combining 

different techniques into the study of the 

physicochemical behavior and classification of 

natural and synthetic products of medicinal and/

or industrial significance, we hereby report how 

to perform the cheminformatic classification of 

natural and synthetic monoaromatic antioxidants 

by multivariate analysis, data mining and machine 

learning algorithms. The classification tool 

developed in this work was based on self-fit of 

constrained data and is intended to show how 

natural products can be differentiated by their 

intrinsic physicochemical and biopharmaceutical 

features, even though their chemical structures 

share many similarities.
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2. MATERIALS AND METHODS
2.1. Molecule selection
Herein, 20 natural monoaromatic antioxidants were 
selected following products of secondary plant 
metabolism from the shikimic acid biosynthetic 
pathway. The selected natural products were: gallic 
acid (GAc); ellagic acid (EAc); phloroglucinol (PG); 
benzoic acid (BAc); p-hydroxy benzoic acid (p-HBAc); 
gentisic acid (GenAc); 3,4 dihydroxy benzoic acid 
(3,4 di-HBAc); p-amino benzoic acid (p-ABAc); 
salicylic acid (SalAc); vanillic acid (VanAc); syringic 
acid (SyrAc); phenyl pyruvic acid (PhPAc); p-hydroxy 
phenyl pyruvic acid (p-HPhPAc); phenylalanine 
(PhAl); tyrosine (Tyr); cinnamic acid (CinAc); 
p-hydroxy cinnamic acid (p-HCinAc); 3,4 dihydroxy 
cinnamic acid (3,4 di-HCinAc); ferulic acid (FerAc); 
and synapinic acid (SynAc).

Moreover, 20 synthetic monoaromatic antioxidants 
commonly used in foodstuff and cosmetics were 
selected, namely: methyl paraben (MetPar); ethyl 
paraben (EtPar); propyl paraben (ProPar); isopropyl 
paraben (IsoProPar); butyl paraben (ButPar); isobutyl 
paraben (IsoButPar); heptyl paraben (HepPar); 
butyl hydroxy toluene (BHT); butylated hydroxy 
anisole (BHA); t-butyl hydroquinone (TBHQ); 2,4,5 
tri-hydroxy butyrophenone (THBP); o-cresol (o-Cre); 
m-cresol (m-Cre); p-cresol (p-Cre); chlorocresol 
(ClCre); 2 phenoxy ethanol (PhEt); pyrogallol (PyrGa); 
propyl gallate (PropGa); ethoxyquin (EtQuin); and 2,4 
dichloro phenoxy acetamide (2,4-DA).

2.2. Data gathering and pretreatment
The information regarding the physicochemical 
and pharmacokinetic properties of the selected 
compounds was gathered from PubChem 
database (KIM et al., 2021), which was used to 
retrieve the isomeric (when available) or canonical 
simplified molecular-input line-entry system 
(SMILES) of each compound. Moreover, PubChem 

built-in features were also used to compute MW 
with PubChem 2.1; Log P with XLogP3 3.0; as well 
as DHb, AHb, RB and TSA with Cactvs 3.4.6.11. 
Thereafter, each SMILES was individually inputted 
into pkCSM database, wherein GI and BBB were 
also computed (PIRES et al., 2015).

The SMILES-string of each compound was 
converted to a three-dimensional rendering of their 
chemical structures and submitted to steric energy 
minimization procedures, which involved force 
field approaches from classic molecular mechanics 
(MM2) and assisted model building and energy 
refinement (AMBER) toolsets (NETO et al., 2019), 
which are detailed further in the methods section. 
All calculations were performed on Chem3D® 
Software and UCSF Chimera software (version 1.13.1) 
(PETTERSEN et al., 2004). The resulting model (.mol2 
extension) underwent editing whereupon charges 
were assigned using Biovia Discovery Studio® 
software. Manual corrections regarding aromatic 
bonds were also conducted and all structures were 
thoroughly reviewed before further experiments.

2.3. Alignment determination and rendering
To calculate the alignment of the compounds 
to investigate their shared structural features, a 
pharmacophore-modeling algorithm was used. 
Therefore, all treated structures were added to a 
single .mol2 extension file using UCSF Chimera 
software, and submitted to PharmaGist Webserver 
(SCHNEIDMAN-DUHOVNY et al., 2008). The work 
conditions were: 5 output pharmacophores; 
minimum of 3 features in the predicted model; and 
the following weightings for contributor modelling: 
3.0 for aromatic rings; 1.0 for charge (anion/cation); 
1.5 for hydrogen bond (donor/acceptor); and 0.3 for 
hydrophobic contributors. Thereafter, the calculated 
models which presented the highest amount of hits 
(alignments) and highest score were rendered in 3D 
using Biovia Discovery Studio® software.
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2.4. EHM and determination of 
molecular orbital energies
The semiempirical EHM was applied to all molecules 
aiming to evaluate the energy-gap between orbitals, 
which can be associated to the thermodynamic 
feasibility of redox reactions (RODRIGUES et al., 
2019). Following a previously described protocol 
(THOMAZ et al., 2022), the EHM calculations were 
performed in order to compute the energies of the 
highest occupied molecular orbitals (HOMO) and 
lowest unoccupied molecular orbitals (LUMO). 

The energy gap between HOMO and LUMO (ΔE) 
is inversely proportional to the redox reactivity of 
molecules, what therefore provides a quantitative 
insight on the required energy to promote charge 
transfer in the frontier orbitals. All calculations were 
conducted in silico post steric energy minimization 
by force field and classic molecular mechanics-based 
approaches (i.e., MM2 and AMBER). Furthermore, the 
ΔE (nOrbital = 0) was expressed in eV.

2.5. Energy refinement by MM2 and AMBER
To standardize the handling of cheminformatic 
data in this work, all molecules underwent energy 
refinement by MM2 and AMBER. As previously 
described (THOMAZ et al., 2022), MM2 is a force 
field-based method which reliably reproduces 
the geometry of molecules at equilibrium by 
implementing a large set of continuously refined 
parameters, which are updated according to data 
regarding individual atoms and classes of organic 
compounds (HALGREN, 1992; PONDER, RICHARDS, 
1987) a subject to which little attention has been 
given to date. We first show that the commonly used 
Lennard-Jones and Exp-6 potentials fail to account 
for the high quality rare-gas data but that a relatively 
simple distance-buffered potential (Buf-14-7, eq 
10. This approach was selected to preliminarily 
minimize the steric energy of the compounds 
herein investigated and was accompanied by the 
application of AMBER. The minimum root-mean 

square gradient herein used to optimize the 
structures was of 0.010.

2.6. Statistical modeling
In this work, multivariate statistics in the form of 
PCA was performed (JOLLIFFE, CADIMA, 2016). This 
approach was selected to minimize dimensions 
basing on variance/correlation matrix, and to 
segregate observational variables based on their 
shared features. The two first components of the 
PCA were extracted and graphically represented as a 
biplot of the loadings and scores, with eigenvectors 
also represented therewithin. Moreover, a data 
mining approach was also used in the form of a 
feature selection algorithm employing MW; Log P; 
DHb; AHb; RB; TSA; WS; GI and BBB as continuous 
predictive variables, while ΔE was selected as a 
continuous dependent variable.

The results were expressed as importance table 
containing the f and p-values of the mined data. 
The f-value was herein used to indicate which 
variable impacted the most on the model and was 
calculated by the ratio of the variation between the 
dataset means and within the datasets. Furthermore, 
statistically significant difference was attributed to p < 
0.05, and the calculations were carried out in Statistica® 
12 software (StatSoft, Oklahoma, USA).

2.7. Machine learning algorithm
2.7.1. Support-Vector Machine (SVM)

The supervised machine learning model SVM 
was herein used to provide classification of the 
full dataset (CERVANTES et al., 2020). This method 
consists of a non-probabilistic binary linear classifier 
which uses hyperplanes for multidimensional 
analysis. In this sense, the datasets associated to 
each attribute are scattered into the hyperplane and 
selected kernel-vectors are used to replace every 
dot product to better segregate/classify data. The 
kernel function herein selected was linear, being the 
code written in python language. The training set 
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was randomly selected from the train dataset which 
encompassed 70% of all data, and the validation 
was carried out in the remaining 30% data.

Regarding SVM hyperparameters, the random 
state for the kernel implementation was of 0, and 
the random state of the selected test group was 
screened between 0 to 3. The final selected random 
state was the one which presented better response 
in the confusion matrix. This was performed to 
reduce the intrinsic bias associated to random 
selection in the small dataset herein used. The 
accuracy of the model, standard deviation and the 
confusion matrix were calculated and rendered in 
python. The following libraries were used in this 
work: sklearn; matplotlib and numpy, while plotly 
was used in graphics rendering.

Two SVM works were carried out in this work. The 
first considered as inputs all attributes, namely:  MW; 
Log P; DHb; AHb; RB; TSA; WS; GI; BBB, and ΔE; being 
the outputs the main classes: natural and synthetic 
monoaromatic antioxidants. The second SVM work 
considered the dimension-reduced first two PC from 
the PCA model encompassing all data. This was 
performed to evaluate if the dimension-reduction 
promoted by the PCA would putatively improve the 
accuracy of the model. Results were presented as 
accuracy and standard deviation values, as well as 
confusion matrixes.

2.7.2. Multilayer Perceptron (MLP)
The MLP approach was herein used to allow data 
classification from inputted attributes (TANG et al., 
2016). MLP is a feedforward artificial neural network 
which uses backpropagation-based supervised 
machine learning, thereby allowing the use of 
layers of nodes (i.e., input, hidden and output layers) 
whereupon non-linear activation functions are 
assigned (NAGY et al., 2022). The work conditions for 
MLP implementation were alpha of 1e-05; automatic 
batch size; beta1 of 0.9; beta2 of 0.999; epsilon 
of 1e-08, sizes of hidden layers of (5,2); constant 

learning rate and beginning at 0.001. Moreover, 
the total number of iterations was of 500; the 
momentum was set to 0.9; the power was set to t = 
0.5; random state set to 1 and validation fraction to 
0.1. Furthermore, the training set encompassed 70% 
of all data, and the validation was carried out in the 
remaining 30% data. The following libraries were 
used in this work: sklearn; matplotlib and numpy, 
while plotly was used in graphics rendering.

Two MLP works were carried out in this work. The 
first considered as inputs all attributes, namely:  MW; 
Log P; DHb; AHb; RB; TSA; WS; GI; BBB, and ΔE; being 
the outputs the main classes: natural and synthetic 
monoaromatic antioxidants. The second MLP work 
considered the dimension-reduced first two PC from 
the PCA model encompassing all data. This was 
performed to evaluate if the dimension-reduction 
promoted by the PCA would putatively improve the 
accuracy of the model. Results were presented as 
accuracy and standard deviation values, as well as 
confusion matrixes.

3. RESULTS AND DISCUSSION
3.1. Alignment modeling and data 
preparation for multivariate analysis
The first step in this study comprised the 
collection and treatment of data for the alignment 
investigation and multivariate analysis. Therefore, 
the collected datasets were segregated into two 
major groups, each containing 20 molecules; 
thereby resulting in 40 molecules in total.

The first dataset corresponded to monoaromatic 
antioxidants of natural origin, while the second 
dataset encompassed the synthetic antioxidants. 
Each dataset was composed of two files: i. the MM2 
and AMBER-treated .mol2 extension file containing 
all chemical structures (which was submitted to 
PharmaGist webserver); and ii. the numeric data 
containing the SMILES-ID, selected molecular 
descriptors and corresponding ΔE of each compound. 
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The highest scoring alignment models for each dataset are presented in Figure 1, while the physicochemical/
pharmacokinetic data is presented in Table 1.

Figure 1. Frontal view of the highest scoring alignment model of natural (A) monoaromatic phenolic antioxidants and 
their respective distances in Å (B), 18 of the 20 inputted molecules showcased hit (score: 22.000). Frontal view of the 
highest scoring alignment model of synthetic monoaromatic antioxidants (C) and their respective distances in Å (D), 17 
of the 20 inputted molecules showcased hit (score: 20.365). Aromatic contributors in cyan, hydrogen bond contributors 
in red, positive charge contributors in black and grey.
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Table 1. Abbreviature, SMILES-ID, physicochemical and pharmacokinetic data of the natural and synthetic monoaro-
matic antioxidants herein investigated.

Name MW* Log P* DHb* AHb* RB* TSA* WS# GI# BBB# ΔE†

GAc 170.12 0.7 4 5 1 98 -2.56 43.374 -1.102 -8.016

EAc 302.19 1.1 4 8 0 134 -3.181 86.684 -1.272 -6.827

PG 126.11 0.2 3 3 0 60.7 -1.408 83.549 -0.466 -14.874

Bac 122.12 1.9 1 2 1 37.3 -1.738 100 -0.22 -8.713

p-HBAc 138.12 1.6 2 3 1 57.5 -1.877 83.961 -0.334 -9.461

GenAc 154.12 1.6 3 4 1 77.8 -2.009 80.078 -0.697 -8.010

3,4 di-HBAc 154.12 1.1 3 4 1 77.8 -2.069 71.174 -0.683 -8.447

p-ABAc 197.14 0.8 2 3 1 63.3 -1.907 81.966 -0.389 -8.988

SalAc 138.12 2.3 2 3 1 57.5 -1.808 83.887 -0.334 -8.733

VanAc 168.15 1.4 2 4 2 66.8 -1.838 78.152 -0.38 -8.318

SyrAc 198.17 1 2 5 3 76 -2.223 73.076 -0.191 -8.069

PhPAc 164.16 1.3 1 3 3 54.4 -2.016 80.367 -0.173 -4.348

p-HPhPAc 180.16 0.9 2 4 3 74.6 -1.902 75.043 0.019 -4.358

PhAl 165.19 -1.5 2 3 3 63.3 -2.89 76.21 -0.271 -10.608

Tyr 181.19 -2.3 3 4 3 83.6 -2.89 73.014 -0.698 -10.653

CinAc 148.16 2.1 1 2 2 37.3 -2.608 94.833 0.446 -6.958

p-HCinAc 164.16 1.5 2 3 2 57.5 -2.378 93.378 -0.225 -7.161

3,4 di-HCinAc 180.16 1.2 3 4 2 77.8 -2.33 69.407 -0.647 -6.170

FerAc 194.18 1.5 2 4 3 66.8 -2.817 93.685 -0.239 -6.116

SynAc 224.21 1.5 2 5 4 76 -2.869 93.064 -0.247 -5.847

MetPar 152.15 2 1 3 2 46.5 -1.881 89.457 -0.222 -9.001

EtPar 166.17 2.5 1 3 3 46.5 -2.098 93.728 0.352 -8.912

ProPar 180.2 3 1 3 4 46.5 -2.409 93.328 0.303 -8.873

IsoProPar 180.2 2.8 1 3 3 46.5 -2.501 94.581 0.273 -8.870

ButPar 194.23 3.6 1 3 5 46.5 -2.735 92.708 0.288 -8.859

IsoButPar 194.23 3.4 1 3 4 46.5 -2.785 93.564 0.267 -8.851

HepPar 236.31 4.8 2 3 8 46.5 -3.934 92.856 -0.504 -8.848

BHT 220.35 5.3 1 1 2 20.2 -4.834 91.904 0.434 -12.88

BHA 180.24 3.2 1 2 2 29.5 -2.774 92.762 0.361 -11.841

TBHQ 166.22 2.8 2 2 1 40.5 -1.682 91.427 0.388 -11.912

THBP 196.20 1.9 3 4 3 77.8 -2.096 92.812 -0.868 -7.358

o-Cre 108.14 2 1 1 0 20.2 -0.961 93.067 0.348 -13.256

m-Cre 108.14 2 1 1 0 20.2 -0.961 93.067 0.348 -13.435

p-Cre 108.14 1.9 1 1 0 20.2 -0.961 93.067 0.348 -12.837

ClCre 142.58 3.1 1 1 0 20.2 -1.539 91.406 0.289 -11.250

PhEt 138.16 1.2 1 2 3 29.5 -0.742 85.558 -0.125 -12.729

PyrGa 126.11 0.5 3 3 0 60.7 -1.408 83.549 -0.441 -12.997

PropGa 212.20 1.8 3 5 4 87 -2.113 92.439 -1.132 -7.779
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The alignment calculation evidenced that 18 of 
the 20 inputted molecules of the monoaromatic 
antioxidants of natural origin superimposed in a 
high-scored model (i.e., 22.000); while 17 of the 20 
inputted synthetic antioxidants superimposed in a 
high-scored model (i.e., 20.365). Moreover, the main 
contributors in each model were negatively charged 
(hydrogen bond donors), positively charged and 
aromatic; being the angle between them of ≈ 120o 
in both models.

As can be seen in Table 1, the SMILES-ID of each 
compound was particular and singular to each of 
them, which is an expected finding since this string 
describes their chemical structure. Regarding the 
physicochemical and pharmacokinetic features, 
MW ranged from 108.14 g mol-1 to 302.19 g mol-1; 
Log P ranged from 0.2 to 5.3; DHb ranged from a 
single donor to 4 donors; AHb ranged from a single 
acceptor to 8 acceptors; RB ranged from no routable 
bond to 8 routable; TSA ranged from 20.2 Å2 to 134 
Å2; WS ranged from -4.834 Log mol l-1 to -0.742 Log 
mol l-1; GI ranged from 43.374% to 100%; BBB ranged 
from -1.102 Log BB to 0.446 Log BB; and ΔE ranged 
from -14.874 eV to -4.348 eV.

Monoaromatic phenolic antioxidants are known 
to exhibit antioxidant behavior due to their 
thermodynamic feasibility to undergo oxidation 
(ALVES et al., 2020) it was evaluated the phenolic 
content, redox behavior and antioxidant capacity 
of several selected teas and tisanes from Brazilian 
market. The samples were classified as simple 
(single herb, thereby donating one proton and one 
electron to stabilize free radicals/reactive oxygen 
species (THOMAZ et al., 2018b). This process is 

favored by the electron donor-acceptor properties 
of aromatic compounds, as well as to the influence 
of the hydroxyl group, which acts as a ring activator 
by increasing the electron density of the aryl moiety 
(THOMAZ et al., 2020). In this sense, the presence of 
aromatic and negatively charged contributor in the 
modeling is an expected finding.

Moreover, when taking into account that the highly 
electronegative oxygen in the hydroxyl promotes 
a permanent dipole on the molecule due to its 
inductive effect on adjacent carbon atoms; the 
presence of a positively-charged contributor is also 
an expected finding (CONTARDI et al., 2020). This 
same effect may also be promoted by the aromatic 
ring on atoms directly bounded to it, what also 
explains the different positions of the positively 
charged contributors in both models.

3.2. Multivariate analysis
To correlate the information of all datasets, PCA 
was performed. Therefore, all physicochemical/
pharmacokinetic descriptors were inputted as 
variables, while the names of the molecules were 
selected as observational labels for the scoring 
plot of the model. PCA was performed in three 
separate experiments, namely: i. a simultaneous 
calculation encompassing all datasets (i.e., natural 
and synthetic monoaromatic antioxidants); ii. a 
calculation encompassing the dataset of the natural 
monoaromatic antioxidants; and iii. a calculation 
encompassing the dataset of the synthetic 
monoaromatic antioxidants. Results are presented 
as PCA biplots and correlation matrixes in Figure 2 
and Table 2, respectively.

Name MW* Log P* DHb* AHb* RB* TSA* WS# GI# BBB# ΔE†

EtQuin 217.31 3.1 1 2 2 21.3 -3.365 92.118 0.403 -9.527

2,4-DA 220.05 2.2 1 2 3 52.3 -2.131 91.855 -0.04 -11.186

* MW was computed by PubChem 2.1 and is expressed in g mol-1; Log P was computed by XLogP3 3.0; DHb/AHb/ RB and TSA (in Å2) 
were computed by Cactvs 3.4.6.11; # Data retrieved from PkCSM, WS is expressed in numeric Log mol l-1; GI is expressed in %; BBB 
is expressed in numeric Log BB. † ΔE in eV = (HOMO-LUMO) energy values, which were obtained by EHM.    Data from synthetic 
monoaromatic phenolic antioxidants.
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Figure 2. PCA biplot of all datasets (A), biplot of the data from monoaromatic antioxidants of natural origin (B), and the 
dataset from synthetic monoaromatic antioxidants (C).
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Table 2. Correlation matrix of the physicochemical and pharmacokinetic data of all monoaromatic antioxidants herein 
investigated.

All MW* Log P* DHb* AHb* RB* TSA* WS# GI# BBB# ΔE†

MW* 1 0.20243 0.25879 0.5914 0.50299 0.492 -0.74114 0.02451 -0.29748 0.43338

Log P* 0.20243 1 -0.52278 -0.39306 0.28059 -0.53005 -0.32953 0.55336 0.50845 -0.07532

DHb* 0.25879 -0.52278 1 0.75165 -0.16963 0.85873 -0.07455 -0.62228 -0.88467 0.22596

AHb* 0.5914 -0.39306 0.75165 1 0.17115 0.95441 -0.25031 -0.43676 -0.77227 0.61332

RB* 0.50299 0.28059 -0.16963 0.17115 1 0.05424 -0.51258 0.15959 0.01233 0.38741

TSA* 0.492 -0.53005 0.85873 0.95441 0.05424 1 -0.17502 -0.55081 -0.85905 0.54922

WS# -0.74114 -0.32953 -0.07455 -0.25031 -0.51258 -0.17502 1 -0.01996 0.04517 -0.28821

GI# 0.02451 0.55336 -0.62228 -0.43676 0.15959 -0.55081 -0.01996 1 0.53522 -0.19288

BBB# -0.29748 0.50845 -0.88467 -0.77227 0.01233 -0.85905 0.04517 0.53522 1 -0.3422

ΔE† 0.43338 -0.07532 0.22596 0.61332 0.38741 0.54922 -0.28821 -0.19288 -0.3422 1

Natural MW* Log P* DHb* AHb* RB* TSA* WS# GI# BBB# ΔE†

MW* 1 -0.10235 0.4062 0.86428 0.14173 0.78392 -0.67687 -0.01275 -0.4235 0.38805

Log P* -0.10235 1 -0.32196 -0.09398 -0.23839 -0.25898 0.34356 0.38227 0.26103 0.46238

DHb* 0.4062 -0.32196 1 0.70005 -0.43383 0.84985 -0.27926 -0.60195 -0.89815 -0.24695

AHb* 0.86428 -0.09398 0.70005 1 -0.05604 0.95166 -0.52922 -0.3017 -0.68746 0.23743

RB* 0.14173 -0.23839 -0.43383 -0.05604 1 -0.17233 -0.39302 0.05558 0.48795 0.46517

TSA* 0.78392 -0.25898 0.84985 0.95166 -0.17233 1 -0.50946 -0.46501 -0.82208 0.1169

WS# -0.67687 0.34356 -0.27926 -0.52922 -0.39302 -0.50946 1 0.02778 0.23792 -0.28361

GI# -0.01275 0.38227 -0.60195 -0.3017 0.05558 -0.46501 0.02778 1 0.52094 0.06748

BBB# -0.4235 0.26103 -0.89815 -0.68746 0.48795 -0.82208 0.23792 0.52094 1 0.19322

ΔE† 0.38805 0.46238 -0.24695 0.23743 0.46517 0.1169 -0.28361 0.06748 0.19322 1

Synthetic MW* Log P* DHb* AHb* RB* TSA* WS# GI# BBB# ΔE†

MW* 1 0.62218 0.15997 0.46637 0.74797 0.40126 -0.83629 0.30785 -0.26216 0.61716

Log P* 0.62218 1 -0.32514 -0.15972 0.47976 -0.2802 -0.85383 0.52293 0.34485 0.1939

DHb* 0.15997 -0.32514 1 0.62452 0.11644 0.75567 0.04788 -0.31543 -0.82394 0.25397

AHb* 0.46637 -0.15972 0.62452 1 0.59867 0.92973 -0.15977 0.00177 -0.73272 0.81796

RB* 0.74797 0.47976 0.11644 0.59867 1 0.45198 -0.56768 0.25641 -0.35638 0.69041

TSA* 0.40126 -0.2802 0.75567 0.92973 0.45198 1 -0.04144 -0.0725 -0.81561 0.6699

WS# -0.83629 -0.85383 0.04788 -0.15977 -0.56768 -0.04144 1 -0.32652 -0.05267 -0.36704

GI# 0.30785 0.52293 -0.31543 0.00177 0.25641 -0.0725 -0.32652 1 0.29895 0.3942

BBB# -0.26216 0.34485 -0.82394 -0.73272 -0.35638 -0.81561 -0.05267 0.29895 1 -0.43452

ΔE† 0.61716 0.1939 0.25397 0.81796 0.69041 0.6699 -0.36704 0.3942 -0.43452 1

* MW was computed by PubChem 2.1 and is expressed in g mol-1; Log P was computed by XLogP3 3.0; DHb/AHb/ RB and TSA (in Å2) 
were computed by Cactvs 3.4.6.11; # Data retrieved from PkCSM, WS is expressed in numeric Log mol l-1; GI is expressed in %; BBB 
is expressed in numeric Log BB. † ΔE in eV = (HOMO-LUMO) energy values, which were obtained by EHM.    Data from synthetic 
monoaromatic phenolic antioxidants. Bold values represent the most representative correlations.
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Results showed that the first two PCs in the 
calculations encompassing all data accounted 
for 73.5% of all variances; while the first two PCs 
of the calculations encompassing the datasets of 
natural and synthetic monoaromatic antioxidants 
accounted for 69.5% and 78.42%, respectively.

Concerning the PCA encompassing all datasets, 
Figure 2.A depicted that the descriptive 
eigenvectors representing Log P, GI and BBB were 
displaced in the II quadrant of the biplot; while 
those of RB, MW, ΔE and AHb were displaced in the 
I quadrant. Moreover, the eigenvectors of TSA and 
DHb were in the IV quadrant of the biplot, while 
WS eigenvector was located in the III quadrant. 
The displacement and convergence of these 
eigenvectors could also be noted in the correlation 
matrix (Table 2). Furthermore, although there was 
no absolute clustering of the scores in the biplot; 
some grouping could be suggested such as the 
phenylpropanoids in the I quadrant, the parabens 
in the II quadrant, the cresols in the III quadrant, and 
the short-chained phenols in the IV quadrant.

Regarding the PCA encompassing the antioxidants 
of natural origin, Figure 2.B, presented that the 
descriptive eigenvectors representing Log P, GI and 
BBB were also displaced in the II quadrant of the 
biplot, though their convergence was bigger than 
what seen in Figure 2.A, and RB eigenvector is now 
in this quadrant. The eigenvectors representing 
MW, ΔE and AHb were again displaced in the I 
quadrant, however the TSA eigenvector is now in 
this quadrant. Moreover, the eigenvector of DHb 
was in the IV quadrant of the biplot; while WS 
eigenvector was in the III quadrant, as in Figure 
2.A. The displacement and convergence of these 
eigenvectors was also suggested in the correlation 
matrix (Table 2). Furthermore, some grouping of 
short-chained phenols on the III and IV quadrants 
could be suggested.

The PCA encompassing the antioxidants of synthetic 
nature presented the highest amount of accounted 
variance by the first two PCs, what is presented in the 
correlation matrix (Table 2). The eigenvectors also were 
differently displaced form what was seen in Figures 
2.A and B, being that Log P and GI eigenvectors are 
now in the I quadrant, while AHb eigenvector is in the 
IV quadrant (Figure 2.C). Moreover, some grouping 
could be suggested for parabens in the I quadrant and 
for cresols in the III quadrant.

When taking into account that a higher partition 
coefficient value (i.e., Log P) indicates the propension 
of chemicals to solubilize in less-polar media, 
considering an interface between two immiscible 
solvents (polar and less-polar) at equilibrium, it 
can be suggested that the convergence between 
Log P, GI and BBB eigenvectors is in agreement 
with the literature (THOMPSON et al., 2012). 
This interpretation is since the penetration of 
compounds through the tissues of the GI tract and 
endothelial epithelium is favored by less-polar 
compounds (i.e., greater Log P). Moreover, the very 
lipophilic nature of the outer-phospholipidic bilayer 
of both enteral and endothelial cells also suggest 
that small lipophilic compounds are more feasible to 
permeate through them, what is nonetheless widely 
reported (CHARALABIDIS et al., 2019; MATSUMURA 
et al., 2020).

Considering that all compounds shared a 
monoaromatic core, the increase of their MW also 
suggested higher structural complexity. In this 
sense, the increase in RB is an expected finding, as 
the increase of the atom count of non-aromatic 
substituents would increase the amount of frontally-
overlapped orbitals (σ bonds); which are known to 
exhibit rotativity (KRAPP et al., 2006) Pauli repulsion 
ΔEPauli and attractive orbital interactions ΔEorb. 
The energy terms are compared with the orbital 
overlaps at different interatomic distances. The 
quasiclassical electrostatic interactions between two 
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electrons occupying 1s, 2s, 2p (σ. Moreover, owing 
to the fact that hydroxyl moieties are good donors 
and acceptors of hydrogen bonds (NETO et al., 2019), 
some degree of correlation between their respective 
eigenvectors is expected; what was nonetheless 
hinted by the PCA and the correlation matrix.

3.3. Application of the feature 
selection algorithm
After multivariate analysis, all datasets were 
submitted to a feature selection data mining 
algorithm. Therefore, MW; Log P; DHb; AHb; RB; 
TSA; WS; GI and BBB were inputted as continuous 
predictive variables, while ΔE was selected as a 
continuous dependent variable. The results are 
presented in Table 3.

Table 3. Feature selection of the continuous predictors 
for the dependent variable ΔE† according to the data 
mining model. The predictors were ranked according to 
their F and p values.

Predictor F-value p-value

WS# 6.377698 0.000068

AHb* 5.836442 0.000539

MW* 3.401675 0.007892

RB* 3.028577 0.022904

TSA* 2.865562 0.019340

DHb* 1.908551 0.145647

Log P* 1.862857 0.102604

GI# 1.477862 0.222744

BBB# 1.415533 0.229178

* MW was computed by PubChem 2.1 and is expressed in g 
mol-1; Log P was computed by XLogP3 3.0; DHb/AHb/ RB and 
TSA (in Å2) were computed by Cactvs 3.4.6.11; # Data retrieved 
from PkCSM, WS is expressed in numeric Log mol l-1; GI is 
expressed in %; BBB is expressed in numeric Log BB. † ΔE in eV 
= (HOMO-LUMO) energy values, which were obtained by EHM.    
Data from synthetic monoaromatic phenolic antioxidants.

Results presented that the feature selection data 
mining algorithm favored WS, AHb, MW, RB and TSA 
as the main contributors to the model; being that all 
of them presented statistically significant difference 

and importance (Table 3). On the other hand, DHb; 
Log P; GI and BBB did not present statistically 
significant difference.

Considering that aryl-bound moieties containing 
highly electronegative atoms enhance the reactivity 
of the compound, and thereby turns it more 
susceptible to undergo redox reactions (CONTARDI 
et al., 2020); the significant contribution of WS and 
AHb is an expected trend. This can be justified by 
the fact that the permanent dipole promoted by 
electronegative atoms such as oxygen leads to a 
higher feasibility of hydration (what is opposed by 
Lop P as well as lipophilicity-based parameters such 
as GI and BBB) (BANERJEE et al., 1980).

3.4. Machine learning algorithms
3.4.1. SVM and MLP results

The SVM employing linear kernel function used in 
this work aimed to stablish a classifier model of all 
datasets; thereby allowing the separation of the 
natural and synthetic monoaromatic antioxidants 
according to their imputed features. Therefore, two 
main approaches were conducted: i. a linear-kernel 
SVM calculation was implemented on all dataset, and 
ii. a linear-kernel SVM calculation was implemented 
with the dataset provided by the first two PCs (i.e., 
the ones which explained the highest amount of 
cumulative variance in the model).

Although the use of the first two PCs would 
be counter-intuitive due to the data loss of the 
dimension reduction provided by the PCA, it must be 
considered that PCA is a common tool in hierarchical 
clustering analysis and in tandem with classification 
approaches. Furthermore, the MLP implementation 
in this work was intended to evaluate if the use of an 
artificial neural network would provide improvement 
of the classification in comparison to the SVM 
non-probabilistic binary linear classifier. Therefore, 
two main MLP works were conducted akin to SVM, 
namely: i. a MLP calculation using all dataset, and 
ii. a MLP calculation using the dataset provided by 
the first two PCs (i.e., the ones which explained the 
highest amount of cumulative variance in the model). 
Results are presented in Figure 3.
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The PCA scoring plot allowed the partial 
differentiation of the scattered data, what is 
nonetheless a remarkable finding (Figure 3.A). The 
SVM accuracy and standard deviation results for 
both models were 85 % and 20 %; although their 
responses differed as presented in the confusion 
matrix (Figure 3.B and C). Moreover, MLP yielded 
80% accuracy and 18.71% standard deviation 
in both works, although the confusion matrix 
exhibited different responses according to the 
imputed data (Figure 3. D and E).

The PCA scoring plot (Figure 3.A) also suggested 
that the information therewithin contained in the 
datasets could be classified, although some overlap 
could be noticed. In this sense, the application of 
SVM linear kernel-vectors and MLP would most 
likely allow the segregation of the datasets upon 
calculations using PC1 and PC2 as inputs. However, 
the overall results (i.e., accuracy and standard 
deviation) were the same upon SVM and MLP 
using all attributes and PC1/PC2 as inputs, what is 
a remarkable finding. Although PCA is a statistical 
dimension-reduction method, this effect seemingly 
didn’t impact the accuracy and standard deviation 
of both SVM and MLP models.

Regarding SVM, the confusion matrixes presented 
difference, since the one using all datasets exhibited 
50% of hits regarding true positives; no false positive 
regarding natural monoaromatic antioxidants; no 
false positives regarding synthetic monoaromatic 
antioxidants, and 50% true positives regarding 
synthetic antioxidants. On the other hand, the 
confusion matrix containing the first two PCs as 
inputs presented 41.67 % of hits regarding true 
positives; 8.33% of false positive regarding natural 
monoaromatic antioxidants; no false positives 
regarding synthetic monoaromatic antioxidants, and 
50% true positives regarding synthetic antioxidants.

Concerning MLP, the confusion matrixes presented 
that the one using all datasets exhibited 41.67% of 

hits regarding true positives; 8.33% of false positive 
regarding natural monoaromatic antioxidants; 8.33% 
of false positives regarding synthetic monoaromatic 
antioxidants, and 41.67% true positives regarding 
synthetic antioxidants. On the other hand, the 
confusion matrix containing the first two PCs as 
inputs presented 16.67 % of hits regarding true 
positives; 33.33% of false positive regarding natural 
monoaromatic antioxidants; 8.33% of false positives 
regarding synthetic monoaromatic antioxidants, and 
41.67% true positives regarding synthetic antioxidants.

In this sense, it can be suggested that both SVM 
and MLP approaches presented similar accuracies 
and standard deviations; although the dimension 
reduction promoted by the PCA seemingly impaired 
the adequate classification of the compounds in 
natural and synthetic. Therefore, the best results 
were obtained by imputing all attributes in the 
SVM calculations, while MLP calculations with all 
attributes yielded the second-best results. This 
is an important finding to refine the application 
of machine learning classifiers based on 
physicochemical and biopharmaceutical descriptors 
of small molecules, as the adequate selection 
of the tool is critical for potential applications in 
discrimination analysis, such as the classification 
of food and drug preservatives according to their 
sourcing that was herein described.

Even though our results are promising, this 
investigation was intended as a proof-of-concept, 
and more studies are to be performed to further 
shed light on the use of mathematical and machine 
learning classifiers to evaluate the similarities 
and distinctions between datasets composed 
by the biopharmaceutical and physicochemical 
descriptors of food and drug preservatives from 
natural and synthetic nature.

The limitations of this work are: i) the reduced 
number of substances evaluated; ii) the absence 
of experimental data regarding their antioxidant 
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activity; and iii) many properties that were 
considered are predicted values. Thus, we 
investigated a predictive model based on a mixture 
of empirical and predicted data, which increases bias.

4. CONCLUSIONS
This work showcased how to classify natural 
and synthetic monoaromatic antioxidants by 
means of multivariate analysis, data mining and 
machine learning algorithms. Altogether the data 
showcased that the alignment model suggested 
similarity between the major aromatic, negative 
and positively charged contributors. Moreover, the 
physicochemical and biopharmaceutical molecular 
descriptors remarkedly correlated with each other, 
thereby allowing reliable and prompt classification 
of natural and synthetic monoaromatic antioxidants. 
Furthermore, we hope that this work sheds light 
on the use of artificial intelligence techniques to 
develop classification tools for natural products in 
scientific and industrial applications.
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